LOGG Stack: The
Beginning

How to install the core of the LOGG stack. With a lot of technical dive along the way.

e Introduction

e Chapter 1: Understanding the Core Components of the LOGG Stack

o Overview

Section 1: Linux - The Foundation

o

o

Section 2: OpenSearch - The Data Engine

o

Section 3: Grafana - Visualizing Data

Section 4: Go - The Programming Language of Choice

o

o

Section 5: But Thats Not All - Extending the LOGG Stack

o

Chapter 1 Review and Looking Ahead

e Chapter 2: Understanding and Setting Up VirtualBox

o Section 1: Introduction to VirtualBox

Section 2: How VirtualBox Differs from Dedicated Systems like ESXi or Proxmox

o

o

Section 3: Getting VirtualBox

o

Section 4: Getting Ubuntu Linux

Section 5: Lets Build a VM

o

o

Section 6: Configuring the VM

e Chapter 3: Installing Linux

Introduction

Introduction to LOGG Stack: The
Beginning

Welcome to LOGG Stack: The Beginning, a project deeply rooted in my extensive journey through
the IT world. My career began in the late '90s, building and troubleshooting PCs at a small mom-
and-pop shop. | transitioned into end-user support in the early 2000s, where | honed my skills in
solving real-world problems for everyday users. As the years passed, | found myself in a more
complex role, serving as a Unix admin for 14 years, where | was responsible for everything from
network management to enterprise-level application development.

In 2017, | joined Elastic, where | immersed myself in the world of data analytics, search
technologies, and the power of open-source solutions. After three years, | switched employers and
moved into a DevOps role, further expanding my skill set and understanding of system automation
and efficiency. Now, I've returned to a Layer 1 NOC environment, where | tackle everything from
end-user support to network engineering.

For the last few years, I've used the LOGG stack—Linux, OpenSearch, Grafana, and Go—to solve
multiple analytics challenges. Over the past nine months, in particular, this stack has proven its
worth in providing real-time insights and powerful data analysis. Now, it’s time to share the power
of this stack with you.

In this book, we'll start by laying the foundation: installing and configuring the core components of
the LOGG stack. But this is just the beginning. As we move forward, we’ll dive into advanced
configurations, custom solutions, and a lot of cool projects along the way. Whether you’re looking
to enhance your network monitoring capabilities or simply want to explore the potential of open-
source tools, this book will guide you through every step of the journey.

Together, we’ll unlock the true potential of the LOGG stack and create a resource that not only
meets the demands of today’s networks but also empowers you to take control of your data and
infrastructure in ways you never thought possible. Let’'s get started!

Chapter 1: Understanding
the Core Components of the
LOGG Stack

Chapter 1: Understanding the Core Components of the LOGG Stack

Overview

In this chapter, we'll explore the fundamental components that form the backbone of the LOGG
stack: Linux, OpenSearch, Grafana, and Go. These technologies have been carefully chosen to work
together, creating a powerful, flexible, and scalable system for network monitoring and analytics.
Before diving into the installation and configuration, it's important to understand the role each
component plays and why it was selected for this stack.

Linux serves as the stable, secure foundation, providing the operating system that supports the
entire stack. Its flexibility, security, and extensive community support make it an ideal choice for
running OpenSearch, Grafana, and Go applications.

OpenSearch acts as the data engine, handling the ingestion, indexing, and retrieval of large
datasets. Its robust search capabilities are crucial for real-time analytics and insights, making it a
key player in the stack.

Grafana is the visualization tool that brings data to life. By integrating with OpenSearch, it enables
the creation of dynamic, interactive dashboards that offer clear, actionable insights into network
performance and other key metrics.

Finally, Go is the programming language of choice for writing custom pollers and system utilities.
Known for its efficiency and performance, Go ensures that these tools run smoothly and handle
concurrent tasks effectively.

This chapter will provide a detailed look at each component, explaining their individual roles and
how they combine to create a cohesive, powerful system. Understanding these elements will
prepare you for the hands-on installation and configuration that follows, giving you the foundation
to build and customize your own LOGG stack.

Chapter 1: Understanding the Core Components of the LOGG Stack

Section 1: Linux - The
Foundation

Linux is the bedrock of the LOGG stack, providing a stable, secure, and versatile operating system
that supports the entire infrastructure. As the foundation of the stack, Linux is not just an operating
system; it's the environment in which every other component operates, ensuring that the system is
reliable, performant, and adaptable to a wide range of needs.

Why Linux?

Linux has been the go-to choice for server environments for decades, and for good reason. It offers
unparalleled stability, which is critical for maintaining a network monitoring and analytics system
that needs to run continuously without interruption. Its open-source nature allows for complete
transparency, enabling you to tailor the system to your specific needs and ensure that you're not
locked into any vendor-specific solutions.

Security is another cornerstone of Linux. With a robust permissions system, extensive support for
encryption, and a strong security community, Linux is well-equipped to protect your data and
applications from threats. Regular updates and patches are readily available, helping you maintain
a secure environment with minimal effort.

Flexibility is where Linux truly shines. Whether you're running a small network or managing a large-
scale enterprise environment, Linux can be configured to meet your requirements. The variety of
distributions available allows you to choose a version that fits your needs—whether it's a
lightweight option like Debian or Ubuntu for general use, or a more specialized distribution tailored
for network management.

Linux in the LOGG Stack

In the LOGG stack, Linux acts as the platform that supports the other components—OpenSearch,
Grafana, and Go. Its ability to efficiently manage resources ensures that these applications run
smoothly, even under heavy loads. Linux’s powerful networking tools, such as iptables for firewall
management and netstat for monitoring network connections, are essential for ensuring that your
stack operates securely and efficiently.

Moreover, Linux’s package management systems (like APT for Ubuntu) make it easy to install and
manage the software required for the LOGG stack. With a few simple commands, you can set up a
robust environment that includes all the necessary components, keeping them up to date with
minimal manual intervention.

The command-line interface (CLI) of Linux is a powerful tool that allows for automation and
scripting, which is essential for managing complex systems. Bash scripts, cron jobs, and other
automation tools can be used to streamline operations, ensuring that tasks such as log rotation,
data backups, and system updates are handled automatically.

Stability and Performance

One of the reasons Linux is favored in server environments is its impressive stability. Linux systems
can run for years without requiring a reboot, which is crucial for maintaining uptime in a network
monitoring setup. The efficient management of system resources—such as CPU, memory, and disk
I/O—ensures that the LOGG stack can handle large datasets and high traffic volumes without
performance degradation.

Linux’s modular design allows you to strip down the operating system to its essentials, reducing
overhead and optimizing performance. This is particularly useful in a monitoring environment
where you need to maximize the efficiency of your hardware to handle the demands of real-time
data processing and analytics.

Security and Community Support

Security in Linux is bolstered by a strong community that regularly audits the code, provides
updates, and patches vulnerabilities. Tools like SELinux (Security-Enhanced Linux) and AppArmor
add additional layers of security by enforcing strict access controls. The vast repository of open-
source tools available for Linux means that you can implement industry-standard security practices
without incurring additional costs.

The Linux community is one of its greatest strengths. Whether you’re looking for support,
documentation, or simply advice on best practices, there is a vast network of experienced
professionals and enthusiasts ready to help. This community-driven support is invaluable when
building and maintaining a complex system like the LOGG stack.

Practical Implementation

In the following chapters, we’ll dive into the practical aspects of setting up Linux for the LOGG
stack. This will include installing the operating system, configuring the necessary packages, and
setting up essential services. By the end of this section, you’ll have a solid, secure foundation on
which to build the rest of the LOGG stack, ensuring that your network monitoring and analytics
platform is as robust and reliable as it needs to be.

Linux is more than just the starting point for the LOGG stack—it’s the backbone that ensures
everything else works in harmony. With its stability, security, and flexibility, Linux provides the
ideal environment to support the advanced capabilities of OpenSearch, Grafana, and Go, enabling
you to create a powerful and efficient network monitoring system.

Chapter 1: Understanding the Core Components of the LOGG Stack

Section 2: OpenSearch - The
Data Engine

OpenSearch is a powerful, open-source search and analytics engine that plays a crucial role in the
LOGG stack by handling the ingestion, indexing, and retrieval of large datasets. Originally
developed as a fork of Elasticsearch, OpenSearch emerged in response to licensing changes that
limited the open-source nature of Elasticsearch. The project was launched by Amazon Web
Services (AWS) and has since grown with contributions from the open-source community.

A Brief History: From Elasticsearch to OpenSearch

Elasticsearch, the foundation upon which OpenSearch is built, was developed by Shay Banon and
first released in 2010. It was built on top of Apache Lucene, a high-performance, full-text search
engine library. Elasticsearch quickly became popular due to its scalability, flexibility, and powerful
search capabilities, making it a go-to solution for log and event data analysis.

In 2021, due to licensing changes made by Elastic, AWS and the open-source community created
OpenSearch by forking the last Apache 2.0-licensed version of Elasticsearch. This move was aimed
at preserving the open-source nature of the project while continuing to evolve and improve the
software.

What OpenSearch Does

OpenSearch excels at processing large volumes of data, enabling real-time search and analytics. It
ingests data from various sources, indexes it for fast retrieval, and allows users to perform complex
queries to extract insights from the data. Its capabilities include full-text search, structured search,
aggregations, and real-time monitoring.

One of the key components of OpenSearch is its ability to handle diverse types of data—structured,
unstructured, and semi-structured. Whether you’re dealing with logs, metrics, or any other form of
data, OpenSearch can index and analyze it, providing you with actionable insights.

The Role of Lucene

At the heart of OpenSearch lies Apache Lucene, the search engine library that powers its indexing
and search capabilities. Lucene is responsible for the low-level indexing and searching of
documents, providing the foundation upon which OpenSearch’s powerful features are built.

Lucene’s architecture allows for efficient indexing and retrieval of documents by breaking down the
data into inverted indices, which are optimized for fast search operations. This architecture enables
OpenSearch to quickly scan through large datasets and return relevant results with minimal delay.

OpenSearch in the LOGG Stack

In the LOGG stack, OpenSearch serves as the central data repository and analytics engine. It
handles the collection and indexing of data from various sources, allowing for efficient search and
analysis. By integrating with Logstash for data ingestion and Grafana for visualization, OpenSearch
enables the LOGG stack to provide a complete solution for network monitoring and analytics.

OpenSearch’s scalability is another critical factor, as it allows the system to handle growing
amounts of data without sacrificing performance. This makes it an ideal choice for environments
where data volumes can vary greatly over time.

Practical Implementation

In the upcoming chapters, we’ll explore how to install and configure OpenSearch as part of the
LOGG stack. We'll cover the basic setup, followed by advanced configurations that allow you to
tailor the system to your specific needs. By the end of this section, you’'ll have a fully functioning
OpenSearch instance, ready to index and analyze the data flowing through your network.

Understanding OpenSearch is crucial for leveraging the full potential of the LOGG stack. It’s not just
a tool for searching; it’s a powerful engine that turns raw data into actionable insights, making it an
indispensable component of modern network monitoring systems.

Chapter 1: Understanding the Core Components of the LOGG Stack

Section 3: Grafana -
Visualizing Data

Grafana is an open-source analytics and interactive visualization web application that serves as a
vital component of the LOGG stack. Known for its flexibility and rich features, Grafana enables
users to create dynamic dashboards and graphs that provide real-time insights into data stored in
various databases, including OpenSearch.

What Grafana Does

Grafana’s primary function is to visualize data, turning raw metrics into actionable insights through
interactive dashboards. It supports a wide range of data sources, making it incredibly versatile for
various monitoring and analytics use cases. Whether you're tracking network performance, system
health, or application metrics, Grafana provides the tools to visualize data in a meaningful way.

Grafana’s strength lies in its ability to create customized dashboards with a wide array of
visualization options, including time-series graphs, heatmaps, tables, and more. Users can interact
with these dashboards, applying filters, zooming in on specific data ranges, and combining multiple
data sources into a single cohesive view.

Grafana in the LOGG Stack

In the LOGG stack, Grafana plays the crucial role of making complex data accessible and
understandable. While OpenSearch handles data ingestion and indexing, Grafana allows you to
visualize this data, creating a powerful combination for monitoring and analytics.

By connecting Grafana to OpenSearch, you can create real-time dashboards that display
everything from network latency and packet loss to server performance metrics. This visual layer
makes it easier to identify trends, spot anomalies, and make informed decisions based on the data.

Grafana also offers alerting capabilities, allowing you to set up custom alerts based on specific
thresholds or conditions. These alerts can notify you of potential issues in your network or system,
enabling proactive management and minimizing downtime.

Flexibility and Integration

One of Grafana’s key advantages is its flexibility. It integrates with a wide variety of data sources
beyond OpenSearch, including Prometheus, InfluxDB, MySQL, and more. This makes Grafana a

central hub for visualizing data across your entire infrastructure, not just within the confines of the
LOGG stack.

Grafana also supports a wide range of plugins, allowing you to extend its functionality with
additional visualization options, data sources, and custom panels. This extensibility ensures that
Grafana can adapt to your specific needs, whether you're monitoring network health, application
performance, or business metrics.

Practical Implementation

In the following chapters, we’ll guide you through the process of installing and configuring Grafana,
connecting it to OpenSearch, and building your first dashboards. We’ll explore various visualization
techniques, how to create effective alerts, and how to customize Grafana to suit your specific
requirements.

By the end of this section, you'll have a deep understanding of how to use Grafana to visualize and
interpret the data collected by your LOGG stack. This will enable you to gain valuable insights into
your network and system performance, empowering you to make data-driven decisions with
confidence.

Grafana transforms raw data into intuitive, actionable visuals, making it an indispensable tool in
the LOGG stack. With its robust feature set and flexibility, Grafana helps bridge the gap between
data collection and analysis, turning your data into a strategic asset.

Chapter 1: Understanding the Core Components of the LOGG Stack

Section 4: Go - The
Programming Language of
Choice

Go, also known as Golang, is a statically typed, compiled programming language designed by
Google. In the context of the LOGG stack, Go serves as the backbone for writing custom pollers,
system utilities, and other automation tools that ensure efficient data collection and management.
Its simplicity, performance, and concurrency support make it an ideal choice for handling tasks that
require speed and reliability.

Why Go?

Go was created with simplicity and efficiency in mind, addressing some of the challenges that
developers faced with languages like C and Java. One of the key reasons Go was chosen for the
LOGG stack is its ability to handle concurrent tasks with ease, thanks to its lightweight goroutines.
This makes it perfect for writing pollers that need to manage multiple data streams simultaneously
without sacrificing performance.

Go is also known for its fast compilation times and minimal runtime dependencies, which means
that programs written in Go are easy to deploy and run on various systems. Its garbage collection
and memory management features reduce the risk of memory leaks and other issues that can
plague long-running applications, making it a reliable choice for network monitoring tasks.

Go in the LOGG Stack

Within the LOGG stack, Go plays a critical role in enhancing the functionality of OpenSearch,
Grafana, and other components. By using Go to develop custom pollers, you can efficiently gather
data from network devices, servers, and other sources, feeding this data into OpenSearch for
indexing and analysis. These pollers can be tailored to your specific needs, ensuring that the LOGG
stack is optimized for your environment.

Go's performance also shines when it comes to processing large volumes of data in real-time.
Whether you're monitoring network traffic, system metrics, or other types of data, Go's ability to
handle concurrent processes ensures that your monitoring system remains responsive and
accurate.

Practical Implementation

In upcoming chapters, we'll delve into how to set up a Go development environment and write your
first Go-based poller. We'll cover everything from the basics of Go programming to advanced

techniques for handling concurrency and optimizing performance. You'll also learn how to integrate
these pollers with the rest of the LOGG stack, ensuring seamless data flow and efficient monitoring.

By the end of this section, you'll have a solid understanding of Go and its role in the LOGG stack.
You'll be equipped to write custom tools that enhance your network monitoring capabilities, giving
you greater control over your data and infrastructure.

Go is more than just a programming language in the LOGG stack; it's a powerful tool that allows
you to extend and customize your system to meet your specific needs. Its efficiency, simplicity,
and concurrency capabilities make it the perfect choice for handling the demands of modern
network monitoring and analytics.

Chapter 1: Understanding the Core Components of the LOGG Stack

Section 5: But Thats Not All -
Extending the LOGG Stack

While the core of the LOGG stack is built on Linux, OpenSearch, Grafana, and Go, the power of this
stack comes from its ability to integrate with other open-source tools that enhance its capabilities.
One such tool is Logstash, a flexible data processing pipeline that ingests, transforms, and forwards
data from various sources to OpenSearch.

Why Logstash?

Logstash is a highly versatile data processing tool that can handle data from a variety of sources,
including logs, metrics, and more. Its strength lies in its ability to parse, filter, and enrich data
before it reaches OpenSearch, ensuring that your data is well-organized and meaningful by the
time you analyze it. Logstash’s ability to handle complex data transformations makes it an
invaluable component in environments where data comes from diverse and dynamic sources.

Logstash in the LOGG Stack

In the LOGG stack, Logstash plays a crucial role in managing the flow of data between your
network and OpenSearch. By configuring Logstash with various input, filter, and output plugins, you
can process raw data into structured formats that OpenSearch can index efficiently. This includes
tasks like parsing log files, enriching data with additional context, or filtering out unnecessary
information.

Logstash also offers flexibility in handling different data formats and protocols, making it easier to
integrate with other systems and applications within your infrastructure. Whether you’'re dealing
with syslog data, JSON logs, or custom application metrics, Logstash can be configured to process it
all seamlessly.

Beyond the Core: Other Tools and Technologies

While Logstash is a key component, the LOGG stack is designed to be adaptable, incorporating
other tools and technologies as needed. For instance, Perl and Ruby can be employed for specific
tasks that require scripting or quick data manipulations. These languages are powerful for writing
custom scripts that can preprocess data, automate tasks, or interface with APIs.

The flexibility of the LOGG stack means that you can integrate any tool that meets your specific
needs. Whether it's a small utility script or a full-fledged application, the stack’s open-source

nature ensures that you can extend and customize it without limitations.

Practical Implementation

So, in the following chapters, we will also explore how to set up and configure Logstash to work
with OpenSearch and other components of the LOGG stack. You'll learn how to create pipelines
that ingest data from various sources, apply transformations, and forward the results to
OpenSearch for indexing. We’'ll also cover how to use additional tools like Perl and Ruby when
specific tasks require more tailored solutions.

By the end of this section, you'll have the knowledge to effectively manage data flows within your
LOGG stack, ensuring that your data is not only collected but also processed and stored in a way
that maximizes its value.

Logstash, along with other complementary tools, adds significant power and flexibility to the LOGG
stack. By embracing these additional components, you can build a truly comprehensive monitoring
and analytics platform that’s capable of handling the diverse and complex needs of modern IT
environments.

Chapter 1: Understanding the Core Components of the LOGG Stack

Chapter 1 Review and
Looking Ahead

In this chapter, we’ve explored the core components of the LOGG stack: Linux, OpenSearch,
Grafana, Go, and Logstash. Each of these tools plays a vital role in creating a powerful,
customizable network monitoring and analytics platform. We’ve delved into why each component
was chosen, how they work together, and the flexibility they bring to the table.

As we move forward, we’ll get hands-on with installing and configuring these components, starting
with setting up the Linux environment. From there, we’ll build out the stack, integrating each tool
and exploring advanced customizations to meet the specific needs of your network. Future
chapters will guide you through creating custom pollers, visualizing data in real-time, and
leveraging the full power of open-source technology. Stay tuned as we transform this foundation
into a dynamic, fully-functional monitoring system.

Chapter 2: Understanding
and Setting Up VirtualBox

Understanding VirtualBox

Chapter 2: Understanding and Setting Up VirtualBox

Section 1: Introduction to
VirtualBox

2.1. What is VirtualBox?

VirtualBox is an open-source virtualization software developed by Oracle that allows you to run
multiple operating systems simultaneously on a single physical machine. It creates a virtual
environment where you can install and operate a guest operating system as if it were a separate
physical machine. This environment is isolated from your main operating system, providing a safe
space to experiment with different configurations, software, and setups without affecting your host
system.

Overview of VirtualBox as a Virtualization Tool

VirtualBox operates by simulating the hardware that an operating system would normally run on.
When you create a virtual machine (VM) within VirtualBox, it allocates a portion of your system's
resources, such as CPU, memory, and storage, to the VM. The guest operating system running on
this VM believes it is working on a real machine, while in reality, it's running within the confines of
the virtual environment provided by VirtualBox.

Key Features and Benefits of Using VirtualBox for Development and
Testing

1. Cross-Platform Compatibility:

e VirtualBox is compatible with a wide range of host operating systems, including
Windows, macOS, Linux, and Solaris. This flexibility makes it an ideal choice for
developers working in diverse environments.

2. Support for Multiple Guest OSes:

e You can install and run various operating systems as guests on VirtualBox, including
different versions of Linux, Windows, and BSD. This is particularly useful for testing
software in different OS environments or learning new systems without needing
additional hardware.

3. Snapshot and Restore:

e VirtualBox allows you to take snapshots of a VM at any point in time. If something
goes wrong during testing or development, you can easily revert to a previous
snapshot, saving time and effort in setting up the environment again.

4. Isolation and Safety:

e Since VMs are isolated from the host system, any changes made within the VM do
not affect the host OS. This isolation provides a secure environment for testing
potentially unstable or risky configurations, software, or code.

5. Resource Management:

e VirtualBox allows you to control the amount of resources allocated to each VM, such
as CPU cores, memory, and disk space. This helps in optimizing performance while
ensuring that the host system remains responsive.

6. Networking Flexibility:

e VirtualBox offers various networking modes (e.g., NAT, Bridged, Host-Only) that
allow VMs to interact with each other, with the host, or with external networks. This
makes it ideal for simulating network environments and testing networking
configurations.

7. Open Source and Community Support:

e As an open-source tool, VirtualBox is free to use and benefits from a large
community of users and contributors. This means frequent updates, a wealth of
tutorials, and a strong support network to help troubleshoot issues.

8. Ease of Use:

e VirtualBox features a user-friendly interface that makes it easy to create and

manage virtual machines, even for those who are new to virtualization.

By providing a flexible, safe, and efficient environment, VirtualBox becomes an essential tool for
developers, system administrators, and IT professionals. Whether you're testing new software,
learning about different operating systems, or setting up isolated environments for development,
VirtualBox offers a powerful solution to meet your needs.

Chapter 2: Understanding and Setting Up VirtualBox

Section 2: How VirtualBox
Differs from Dedicated

Systems like ESXI or
Proxmox

When diving into virtualization, it's important to understand the different options out there and why
we might choose one over the other. VirtualBox, for instance, is quite different from dedicated
systems like ESXi or Proxmox. Let’s break down those differences and explain why VirtualBox is a
great starting point for this project.

Key Differences Between VirtualBox and Dedicated
Systems:

1. Hypervisor Type:
e VirtualBox (Type 2 Hypervisor):
o VirtualBox runs on top of your existing operating system, whether it's Windows,

macOS, or Linux. This makes it easy to get started without making any changes
to your hardware setup.

o ESXi and Proxmox (Type 1 Hypervisors):
o On the other hand, ESXi and Proxmox are what we call type 1 hypervisors.
They run directly on the physical hardware, without needing a host OS in
between. This setup can offer better performance, but it's a bit more complex
to set up and manage.
2. Performance:
e VirtualBox:

o Because VirtualBox runs on top of another operating system, there’s a little bit
of overhead, which can mean slightly lower performance. But for development,
testing, or smaller projects, this isn’t usually a big issue.

e ESXi and Proxmox:

o These systems are designed for performance. They have direct access to the
hardware, which can be crucial in a production environment where you need
every bit of power and efficiency.

3. Resource Management:
e VirtualBox:

o VirtualBox shares your computer’s resources with the host OS, so there’s a bit
of give and take. It's perfect for projects where you don’t need to squeeze
every last drop of performance out of your hardware.

o ESXi and Proxmox:

o These platforms let you manage resources more efficiently, directly from the
hardware. They're built to handle heavy loads and multiple VMs in large-scale
environments.

4. Scalability:
e VirtualBox:

o VirtualBox is really handy for smaller setups or when you're just getting
started. However, it might feel a bit limited if you try to manage a large
number of VMs.

o ESXi and Proxmox:

o These systems are designed to scale. If you're running a data center or
managing dozens of VMs, they offer the tools you need to keep everything
running smoothly.

5. Features and Functionality:
e VirtualBox:

o VirtualBox covers the basics very well. It's got everything you need to create,
manage, and experiment with VMs, making it a great tool for learning and
development.

o ESXi and Proxmox:

o If you need advanced features like clustering, high availability, or live migration
of VMs, that’s where ESXi and Proxmox shine. They’re packed with enterprise-
grade features that go beyond what VirtualBox offers.

6. Ease of Use:
e VirtualBox:

o One of the biggest reasons we’re using VirtualBox for this project is its
simplicity. It's very user-friendly, making it accessible to a wide audience, even
if you're new to virtualization.

o ESXi and Proxmox:

o These platforms are powerful, but they also come with a steeper learning
curve. They're great for IT professionals who need robust tools for managing
complex environments.

7. Use Cases:
e VirtualBox:

o VirtualBox is ideal for anyone who needs to set up a quick, isolated
environment for development, testing, or learning. It's flexible and doesn’t
require any special hardware.

o ESXi and Proxmox:

o These systems are often used in larger, more critical environments. They're the
go-to choice for production servers, large-scale deployments, and when uptime
and reliability are paramount.

8. Cost:
e VirtualBox:
o VirtualBox is free and open-source, which is another reason we’re using it. You
can get started without worrying about licensing costs or subscriptions.
e ESXi and Proxmox:
o ESXi has a free version, but the full feature set requires a license, which can be
expensive. Proxmox is also open-source, with an optional subscription for
support, making it a bit more accessible but still more complex than VirtualBox.

Why We Chose VirtualBox

For this project, we've chosen VirtualBox because it’'s more accessible to a wider audience.
Whether you're a seasoned IT professional or just getting your feet wet with virtualization,
VirtualBox offers a simple, straightforward way to dive in without the complexity or cost of more
advanced systems. It's perfect for experimenting, learning, and building a solid foundation before
moving on to more complex setups like ESXi or Proxmox if needed.

In the next steps, we’ll walk through setting up your first virtual machine in VirtualBox, which will
serve as the base for building our LOGG stack.

Chapter 2: Understanding and Setting Up VirtualBox

Section 3: Getting VirtualBox

VirtualBox is a well-established virtualization tool that has been around since 2007, when it was
first released by Innotek GmbH. Over the years, it has become one of the most popular and widely
used virtualization platforms, thanks to its combination of robust features, ease of use, and,
importantly, its open-source nature. In 2010, Oracle acquired VirtualBox, continuing to develop and
support it, making it a reliable choice for both personal and professional use.

One of the most appealing aspects of VirtualBox is its cross-platform compatibility. Whether you're
running Windows, macQOS, Linux, or even Solaris, VirtualBox will work seamlessly on your system.
This means you can follow along with this project no matter what kind of workstation you're using,
making it accessible to a wide audience.

To get started with VirtualBox, you'll need to download it from the official VirtualBox website.

Here's the link: Download VirtualBox.

Once you're on the site, choose the download option that matches your operating system.
VirtualBox offers straightforward installation packages for different platforms, so just select the one
that fits your setup.

Installation Instructions:

1. For Windows Users:

e Download the Windows installer from the link above.

e Run the installer and follow the prompts. The default settings work fine for most
users.

e After the installation is complete, you can launch VirtualBox from the Start menu or
desktop shortcut.

2. For macOS Users:

e Download the macOS installer (.dmg file) from the VirtualBox website.

e Open the downloaded file and drag the VirtualBox icon to your Applications folder.

e You might need to allow the installation from System Preferences under Security &
Privacy, especially if your system is configured to only allow apps from the App
Store.

3. For Linux Users:

e Most Linux distributions include VirtualBox in their repositories. You can install it
using your package manager, or download the latest version directly from the
VirtualBox website.

e For example, on Ubuntu, you can use the following commands in the terminal:

https://www.virtualbox.org/

o sudo apt update

sudo apt install virtualbox

e If you're downloading it from the website, follow the provided instructions for your
specific distribution.

After installing VirtualBox, you'll be ready to create your first virtual machine and begin exploring
the LOGG stack setup. The beauty of VirtualBox is that you can do this on almost any workstation,

regardless of the operating system, making it an incredibly versatile tool for learning and
development.

Chapter 2: Understanding and Setting Up VirtualBox

Section 4: Getting Ubuntu
LinuxX

When choosing an operating system for our virtual machine, | selected Ubuntu for several reasons.
Ubuntu has been my Linux server of choice for over a decade due to its reliability, stability, and
ease of use. It provides a secure and efficient environment, making it ideal for a wide range of
server applications. Additionally, Ubuntu’s strong community support and comprehensive
documentation ensure that you have access to the tools and resources you need.

To get started, you'll need to download the Ubuntu Server ISO file. You can find the latest version
of Ubuntu Server at the following link:

Download Ubuntu Server ISO

Once you've downloaded the ISO file, | recommend saving it in an organized location on your
computer. Consider creating a dedicated folder for operating system ISOs, such as 0S ISOs , where
you can store this and any future ISO files. This will help keep your files organized and easily
accessible for future use.

Once you have the ISO downloaded we are ready to move on to setting up Virtualbox and getting
the LOGG stack on the road.

https://ubuntu.com/download/server

Chapter 2: Understanding and Setting Up VirtualBox

Section 5: Lets Build a VM

Why Are We Building a VM?

A virtual machine (VM) is essentially a computer within your computer, running on top of your
existing operating system. It allows you to create an isolated environment where you can install
and run different operating systems and software without affecting your main system. For our
LOGG stack project, using a VM gives us the flexibility to experiment and configure each
component in a controlled space. It’s like having a sandbox where you can build, test, and tweak
your setup without any risk to your primary machine. By allocating specific resources like CPU,
memory, and storage, we ensure that the VM can efficiently handle the tasks we'll throw at it, all
while keeping your main system free from potential conflicts.

Lets Get Started

At this point, you should have VirtualBox installed on your system. Upon launching the application,
you will be presented with an interface similar to the one shown below. If you are already familiar
with VirtualBox, you can proceed with the following steps. Our goal is to create a virtual machine
configured with 4 processor cores, 4GB of RAM, and 40GB of hard drive space.

Oracle VM VirtualBox Manager - O x

¢ @A R QW

Preferences Import Export MNew Add
Welcome to VirtualBox!

The left part of application window contains global
tools and lists all virtual machines and virtual machine
groups on your computer. You can import, add and
create new VMs using corresponding toolbar buttons.
You can popup a tools of currently selected element
using corresponding element button.

FEile Machine Help

You can press the F1 key to get instant help, or visit
www.virtualbox.org for more information and latest
news.

To get started, here we will click new. Which will present you with the screen below.

Create Virtual Machine

Name and operating system

Name: l

Machine Folder: |. /home/bvest/VvirtualBox VMs

Type: I Microsoft Windows

Version: IWin dows 7 (64-bit)

Memory size

E
L_F

e e e e EETE——— | 2048
4MB 16384 MB

MB

Hard disk
) Do not add a virtual hard disk

(8 Create a virtual hard disk now

(") Use an existing virtual hard disk file
| Empty | @

IguidedModeH <Back || Create || Cancel]

Let's begin by configuring our virtual machine. For this project, we'll name the VM LOGG-Stack. In
the Machine Folder field, set the directory to LOGG-Stack-VM to keep your files organized. In the
Type dropdown menu, select Linux, and in the Version dropdown, choose Ubuntu (64-bit). Next,

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/image.png
https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/RJoimage.png

set the memory allocation to 4096 MB (which is roughly 4 GB of RAM). You can either type this
value directly or use the slider to adjust it. Once these settings are correctly configured, the setup
screen should resemble the one shown below.

Create Virtual Machine

Name and operating system

Name: |LOGG—Sta|:k

Machine Folder: [,fhomefhvesthogg—StacH

Type: | Linux

Version: | Ubuntu (64-bit)

Memory size

... |a096 |2/ MB

4MB 16384 MB

Hard disk
) Do not add a virtual hard disk
(e) Create a virtual hard disk now
() Use an existing virtual hard disk File

Empky [ed

|guidedMode| < Back l Create]| Cancel |

When you have all of this setup click the Create button and lets move on to the next steps.

After clicking "Create," you will be directed to the virtual hard disk creation screen. This screen
presents several options, most of which can be left at their default settings. However, it's important
to allocate more space for this VM than the default 10GB. To do this, either type in 40GB or use the
slider to adjust the disk size accordingly, as shown below.

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/59uimage.png

Create Virtual Hard Disk

File location

|,.lf home/bvest/Logg-Stack/LOGG-Stack/LOGG-Stack.vdi

File size

4.00 MB 2.00TB

Hard disk file type Storage on physical hard disk
(e) VDI (VirtualBox Disk Image) (e) Dynamically allocated
() VHD (Virtual Hard Disk) () Fixed size
() VMDK (Virtual Machine Disk) [split into Files of less than 2GB
() HDD (Parallels Hard Disk)
) QCOW (QEMU Copy-On-Write)
) QED (QEMU enhanced disk)

Iguided Mode“ < Back |l Create H Cancel

Once you click "Create," the setup process will complete fairly quickly, and you'll be returned to the
main VirtualBox interface. You should now see our newly created VM, LOGG-Stack, listed and
ready for launch. The setup process is straightforward, and your virtual machine is now prepared
for the next steps in our project.

[

Oracle VM VirtualBox Manager - o x

Eile Machine Help

] roots @8 O D

New Settings ©-cord Skart
= General = preview I
Name: LOGG-Stack
Operating System: Ubuntu (64-bit)
[#] system
Base Memory: 4096 MB LOGG-Stack
Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging,
KVM Paravirtualization

= pisplay

Video Memory: 16 MB
Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled
[l storage

Controller: IDE
IDE Secondary Device 0: [Optical Drive] Empty
Controller: SATA
SATA Porkt O: LOGG-Stack.vdi (Normal, 40.00 GB)

ifr Audio

Host Driver: PulseAudio
Controller: ICH AC97

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/BfCimage.png
https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/0Vvimage.png

Although our virtual machine is now set up, we're not quite ready to launch it just yet. Before we
proceed, it's important to configure the VM to ensure it meets the specific requirements for our

project. Let's move on to Section 6, where we'll walk through the configuration steps necessary to
optimize the VM.

Chapter 2: Understanding and Setting Up VirtualBox

Section 6: Configuring the
VM

Introduction

While the initial setup guides us through the basic process of building our virtual machine, there
are a couple of additional adjustments we need to make to ensure it's configured correctly for our
project. Specifically, we need to adjust the number of CPU cores allocated to the VM and mount the
ISO file that will install our operating system. These steps are crucial to optimizing performance
and preparing the environment for the tasks ahead. Let's dive into these configurations to get our
VM fully ready for use.

Why Do We need This?

Configuring the VM with 4 processors and 4096 MB of memory is a critical step to ensure the LOGG
stack performs optimally. In data processing tasks like these, having more CPU cores or threads is
often more important than raw processor speed. This is because the stack’s components,
particularly OpenSearch and Logstash, are designed to handle large volumes of data by
parallelizing tasks across multiple cores.

OpenSearch and Logstash are both built on Java, which manages memory through the Java Virtual
Machine (JVM). JVM-based applications benefit from multiple cores as they can distribute
processing loads across threads, improving performance and responsiveness. However, they also
require sufficient memory to manage data efficiently. OpenSearch uses memory to store index
data and query results, while Logstash needs memory to buffer and process logs in real-time. With
only 4 cores, your system will be able to manage basic tasks, but as data loads increase, these
resources may become a bottleneck. Understanding this allows you to anticipate the system’s
behavior and plan for potential upgrades as your data processing needs grow.

And then there's Linux—the trusty OS that’s about to become the backbone of our entire operation.
Remember that big ISO we downloaded earlier? Yep, it's finally time to put it to work. Linux is like
the dependable engine under the hood; it quietly powers everything we do, from managing
resources to keeping our stack running smoothly. Without it, our processors and memory would be
sitting idle, and our entire setup would be more of a concept than a functioning system. So yes, we
definitely need it, and it’s about to earn its keep.

Lets Get Started

From our VM menu, select the VM we just created and click the Settings gear at the top, as shown
below.

Oracle VM VirtualBox Manager - O 'x

File Machine Help

13 roots Wi O 9.

New Setti == : rt

Settings (Ctrl+S)
= General = preview
Name: LOGG-Stack
Operating System: Ubuntu (64-bit)
[# system
Base Memory: 4096 MB LOGG-Stack
Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging,

KVM Paravirtualization

= pisplay

Video Memory: 16 MB

Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled

& storage

Controller: IDE
IDE Secondary Device 0: [Optical Drive] Empty
Controller: SATA
SATA Port 0: LOGG-Stack.vdi (Normal, 40.00 GB)

{n Audio

Host Driver: PulseAudio
Controller: ICH AC97

Clicking Settings will bring up the screen below.

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/dumimage.png

LOGG-Stack - Settings X

[L] General General

[&] system Tsig| Advanced Description Disk Encryption

[pisplay Allows to navigate |faci |
Storage | vategories "]
(JDJ Audio Version: |Ubuntu (64-bit) - |

@ Network
@ Serial Ports
& use

m Shared Folders
E User Interface

|°§ancel|l Qok]

The adjustments we need to make can be found under the System icon in the VirtualBox settings.
Specifically, we'll focus on the Processor tab, where we can configure the number of CPU cores
allocated to our virtual machine. The following section will guide you through these steps, as
illustrated below.

LOGG-Stack - Settings *

E General System

Syst - .
S Motherboard | Processor ‘ Acceleration
Display : :

El Processor(s): + . . o . . .

Storage 1CPU 12 CPUs
q | -
: ExecutionCap: o w0 0 00T |1DO% v|
@p Audio e 100%
@ Network Extended Features: | | Enable PAE/NX
@ Serial Ports [J Enable Nested VT-x/AMD-

£ uss

m Shared Folders
E User Interface

|@§ancel|l Qox]

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/GnBimage.png
https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/ytBimage.png

Adjust the number of CPU cores by either typing the value directly or using the slider. For this
project, we're aiming to allocate 4 processor cores to ensure optimal performance. If your system
has fewer cores available, you can reduce this to 2 cores, but 4 cores will provide the best results
for our needs.

Next, navigate to the Storage icon in the settings menu. Here, we'll mount the ISO file that
contains our operating system, preparing the virtual machine for installation.

LOGG-Stack - Settings %
E General Storage
E System Storage Devices Attributes
@ Display & Controller: IDE Optical Drive: |IDE Secondary Dey ~ |Q
& controller: SATA Information
(JDZI Audio .
----- £ LocG-stack.vdi Type: -
|§| Network Size: —
& Serial Ports Location: -
Attached to: —
£ usB
D Shared Folders
E] User Interface
oL@

|0§ancel|l Qok]

Once you're in the Storage settings, select the Empty disk option under Controller: IDE. This
represents the virtual DVD drive for our VM, where we'll mount the Ubuntu ISO. Click on the small
blue disk icon next to IDE Secondary Device and choose "Choose a Disk File" from the dropdown
menu. This action will open a file selection window. While the appearance of this window may vary
depending on your operating system, simply locate and select the Ubuntu ISO file that we
downloaded earlier.

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/Afwimage.png

Cancel Please choose a virtual optical disk File Q Open
0 Recent < | {at bvest | ©S_ISOs | >
{3} Home Name Size Type Modified -~

B ubuntu-24.04-live-server-amdé4.iso 2.8GB raw CDimage Tue

[Desktop
(2] Documents
¥ Downloads
J1 Music

(&7 Pictures

i Videos

+ Other Locations

After loading the file you will be returned to the setting screen shown below.

LOGG-Stack - Settings X

E General Storage
E System Storage Devices | Attributes
@ Display & Controller: IDE Optical Drive: |IDE Secondary De) ~ |Q
(‘DII g & controller: SATA TR e

Audio m LOGG-Stack.vdi Type: |mage
& Network Size: 2.57 GB
@ Serial Ports Location: /home/bvest/OS ISOs/...

Attached to: -

£ uss

D Shared Folders

E User Interface

eSE@

|@gancel|[&ok]

From here click OK and you will be returned back to the main virtualbox screen. You can verify your
changes here in the window on the right.

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/WXqimage.png
https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/BIWimage.png

(Oracle VM VirtualBox Manager - o x
File Machine Help

1 roots @ & O 9.

New Settings ©-cord Skart

= General = preview I
Name: LOGG-Stack

Operating System: Ubuntu (64-bit)

=] system

Base Memory: 4096 MB LOGG-Stack
Processors: 4

Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging,
KVM Paravirtualization

= pisplay

Video Memory: 16 MB

Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled

El storage

Controller: IDE

IDE Secondary Device 0: [Optical Drive] ubuntu-24.04-live-server-amdé4.iso (2.57
GB)

Controller: SATA
SATA Port 0: LOGG-Stack.vdi (Normal, 40.00 GB)

({0 Audio
Host Driver: PulseAudio

At this point, you should see that the VM is configured with 4 processors, 4096 MB of Base Memory,
and that the IDE Secondary Device 0 is now set to our Linux ISO. With these configurations in
place, we're ready to start the VM and begin the installation of our operating system. Follow along
in Chapter 3: Installing Linux, where we will walk through the installation process step by step and
explain the various options available.

https://logg.baremetalbridge.com/uploads/images/gallery/2024-08/NQlimage.png

Chapter 3: Installing Linux

Why Linux?

Linux, born in 1991 as a kernel project by Linus Torvalds, has grown into the backbone of countless
systems around the globe, and for good reason. It's a powerful, versatile, and open-source
operating system that’'s become the foundation for everything from small servers to enterprise-
level applications. For our LOGG stack project, Linux is the ideal choice because of its stability,
extensive community support, and flexibility.

We're choosing Ubuntu, a distribution with a strong Debian core, known for its balance between
user-friendliness and deep technical capability. Debian, which Ubuntu is built upon, has a
reputation for stability and performance, making it an excellent choice for running the components
of our stack. By installing Ubuntu manually via the VM terminal, you’ll gain a deep understanding of
the system's architecture, preparing you to manage and troubleshoot the stack as you scale it up.

Understanding the intricacies of a Linux installation—partitioning, selecting the appropriate
packages, and configuring the system—provides a foundation that goes beyond just getting things
up and running. It’s about building a system that you control fully, with the ability to customize and
optimize as needed. This knowledge isn’t just a checkbox on the journey to building the LOGG
stack; it’s a critical skill that will empower you to handle complex technical challenges, not just in
this project but in any Linux-based system you encounter in your career.

