Let's Build The
Internet In a
Weekend

"Let's Build The Internet In a Weekend" is a hands-on guide to creating a fully virtualized Internet
ecosystem, emulating real-world ISP infrastructure on a compact, scalable platform. Using
Proxmox, VyOS, OPNsense, and a range of core services, this project showcases the setup of
dynamic routing, DNS, DHCP, and live monitoring across multiple virtual ISPs—all within a self-
contained environment. Combining practical skills with advanced technology, this book is a
testament to what passion, expertise, and a DIY spirit can achieve, offering a detailed blueprint for
anyone eager to master networking from the ground up.

e Introduction

e Chapter 1: Getting Started

o Section 1: Requirements

o Section 2: High-Level Network Architecture and Design

e Raw Notes

o Internal DNS Configuration for ispl.net in a Private Network Environment

o Building the ISP Mail System with Roundcube

o Kea DHCP Configuration Documentation

Introduction

Introduction

Welcome to Let’s Build The Internet In a Weekend, a journey into the heart of networking where
we’ll create a fully virtualized Internet environment from the ground up. This isn’t just another lab
setup or a simple home network—this is about building a complete digital ecosystem that mirrors
the complexity and functionality of real-world ISPs, all within a controlled, virtual space. Throughout
this guide, you'll see how to transform a collection of virtual machines into a robust, dynamic
network that can handle core services, routing, monitoring, and much more.

Why undertake a project like this? The answer is simple: hands-on experience trumps theory every
time. In the real world of IT, it's not just about knowing how things should work; it’s about making
them work, solving problems on the fly, and integrating diverse systems into a seamless whole.
This project is a bold statement that you don’t need a degree or a stack of certifications to
understand and build complex networks. What you need is the willingness to dig in, experiment,
and learn by doing. With over 20 years of experience in rural telecom and IT infrastructure, this
book distills that practical knowledge into a weekend project that will leave you with a much
deeper understanding of networking fundamentals and advanced configurations.

What You’ll Learn

We’ll take you through every step, from setting up Proxmox to configuring core routers, managing
DNS and DHCP, and implementing real-time monitoring with tools like VyOS, OPNsense, and
Grafana. By the end, you'll have created multiple virtual ISPs, each with its own set of core services
and routing protocols. You’ll understand the basics of dynamic routing, the intricacies of managing
DHCP pools for different types of clients, and how to keep an eye on the whole setup with effective
monitoring tools. This isn't just theory—it's real, practical knowledge you can use to build,
troubleshoot, and optimize networks in the real world.

Who This Book Is For

This book is for anyone passionate about networking, whether you're a seasoned IT professional
looking to sharpen your skills or a home lab enthusiast ready to take things to the next level. It's
also for those who want to bypass traditional educational routes and prove what real-world skills
can accomplish. If you're the kind of person who believes in the DIY ethos of IT, then this project
will resonate with you. It’s for those who prefer hands-on problem solving, who aren’t afraid to get
their hands dirty, and who see technology as a playground for creativity and innovation.

The Vision Behind the Project

This project is more than a technical exercise; it's a statement. It's about proving that practical,
hands-on experience can accomplish what traditional paths might overlook. It's a celebration of the
skills honed through years of working in the trenches of IT, managing everything from DHCP and
RADIUS servers to complex routing and monitoring setups. The ecosystem you’re about to build is
a living demonstration of what’s possible when you combine passion, knowledge, and a willingness
to experiment. By documenting this process step-by-step, we’'re giving you not just a guide but a
blueprint that you can adapt, modify, and use to build your own networks—whether at home, in a
lab, or in a real-world IT environment.

Let’s get started and build the internet, one virtual machine at a time.

Chapter 1: Getting Started

Chapter 1: Getting Started

Section 1: Requirements

Recommended VM Specifications

Since we’re not simulating the scale of a full-blown ISP, we can afford to keep the VMs relatively
light:

1. VyOS VM:
e CPU: 2 cores
e RAM: 1 GB (2 GB recommended)
e Disk: 8 GB
e Network: 1 NIC connected to the real-world bridge, 1 NIC to the core network
bridge, and additional NICs for each virtual ISP bridge.
2. DNS Root VM:
e CPU: 1 core
e RAM: 512 MB (1 GB recommended)
o Disk: 4 GB
e Network: 1 NIC connected to the core network bridge.
3. Stratum 1 Time Server VM:
e CPU: 1 core
e RAM: 512 MB (1 GB recommended)
Disk: 4 GB
Network: 1 NIC connected to the core network bridge.
Hint: There’'s something unique planned for this VM that will add a touch of realism
to the time synchronization setup. Stay tuned.

Knowledge Prerequisites

To get the most out of this project, you should be comfortable with:

e Basic Networking: IP addressing, routing concepts, and network segmentation.

e Linux Command Line: Many configurations will require command-line interaction,
especially when setting up services on VMs.

e Virtualization: Familiarity with creating and managing VMs within Proxmox.

Time and Resource Estimates

1. Time Commitment:
e Initial Setup: Approximately 1-2 hours for configuring Proxmox, setting up bridges,
and creating initial VMs.
e Configuration and Testing: Expect to spend 3-4 hours on setting up core services
and ensuring everything is communicating correctly.
e Full Deployment: Over the course of the weekend, you should be able to bring the
entire virtual internet ecosystem to life.
2. Resource Management Tips:
e Use Snapshots: Take snapshots of your VMs at key configuration points. This
allows you to roll back quickly if something goes wrong.
e Monitor Resource Usage: Keep an eye on CPU, RAM, and disk usage through
Proxmox’s interface. Adjust allocations as needed.

Conclusion

With these requirements in hand, you're ready to start building. This section ensures you have a
clear understanding of what’s needed and how each piece will fit together as we proceed. The next
step is to lay out the network architecture, mapping out how our virtual ISPs will interact and how
the core services will keep everything running smoothly. Let’s get into the design phase!

Chapter 1: Getting Started

Section 2: High-Level
Network Architecture and
Design

Before we start configuring VMs and services, it's essential to understand the overall architecture
of the virtualized internet ecosystem we are building. This section provides a high-level view of how
everything will be designed, including the key components, network topology, and security
considerations. Think of it as the blueprint that will guide us through the technical setup in the
following chapters.

1. Network Topology Overview

Our virtual internet ecosystem will mimic the real-world structure of an ISP network, but on a
smaller, more manageable scale. At its core, the system will consist of:

e Core Services: These include our primary router, DNS root server, and Stratum 1 time
server.

e Network Bridges: The connections between internal VMs, virtual ISPs, and the real
world. Each service and ISP will have a dedicated segment, ensuring clean, isolated
networking.

e Virtual ISPs: Independent network segments, each functioning as its own isolated ISP
environment with its own routing, DHCP pools, and configurations.

Here’s a breakdown of how the network will be organized:

e Core Network (vmbr-core): The heart of our ecosystem, connecting all core services.

e Real-World Bridge (vmbr0): Provides connectivity between our virtual environment and
the external internet, allowing certain services to be accessible publicly.

e ISP-Specific Bridges (vmbr-ispl, vimbr-isp2, etc.): Each virtual ISP will have its own
bridge, creating isolated segments that can be routed and managed independently.

2. Key Components and Their Roles

1. Core Router (VyO0S)

e The VyOS router will serve as the backbone of the network. It will handle:

o Dynamic Routing (BGP): Enabling communication between different
segments of the network and simulating real-world routing behavior.

o Network Segmentation: Isolating traffic between virtual ISPs, core services,
and external networks.

o Security Policies: Acting as a firewall and enforcing rules on how data moves
between segments.

2. DNS Root Server
e This VM will manage domain name resolution within the virtual ecosystem.
e Internal DNS Management: Each virtual ISP will rely on this DNS root for resolving
domain names, ensuring smooth communication within the network.
e Scalability: Configured to handle both internal services and external DNS requests,
simulating real-world DNS infrastructure.
3. Stratum 1 Time Server
e A Stratum 1 server is a precise time source, usually directly connected to a GPS or
atomic clock. In our setup, this VM will:

o Provide Accurate Time Synchronization: Ensuring all services and VMs are
in sync, which is crucial for network operations, security protocols, and
troubleshooting.

o Hint: There’'s a special feature we’ll implement to give this server a realistic
touch, making our virtual ecosystem’s time synchronization as precise as
possible.

4. Root Certificate Authority

e The Root Certificate Authority (CA) will serve as the central entity for issuing and
managing digital certificates within our virtual ecosystem. It ensures that all internal
services can communicate securely by providing trusted certificates for encryption
protocols like HTTPS and TLS.

e Purpose: Setting up our own Root CA allows us to control the security infrastructure,
enabling encrypted connections across the network. This is essential for protecting data,
establishing trust between services, and mimicking real-world ISP security practices.

1. Virtual ISPs
e Each virtual ISP will be an isolated environment, complete with its own:
o Routing and DHCP: Independent configurations, simulating how different ISPs
operate separately yet can be managed centrally.
o Custom Services: DNS and DHCP servers for each ISP will be configured to
allow for unique setups, providing a more realistic ISP simulation.

3. Bridges and Virtual Network
Segmentation

1. Core Network Bridge (vmbr-core)

e Central to internal communication between core services, such as the VyOS router,
DNS root server, and time server.

e Acts as the backbone, ensuring all core components are tightly integrated and
efficiently communicating.

2. Real-World Bridge (vmbr0)

e This bridge connects the virtual environment to the external internet.

e External Access: Necessary for functions like downloading software updates,
public-facing monitoring, and allowing selected external services to interface with
the internal network.

e Secure Routing: Traffic between the real-world network and internal systems will
be strictly managed via VyOS and OPNsense.

3. ISP-Specific Bridges (vmbr-ispl, vmbr-isp2, etc.)

e Each virtual ISP gets its own bridge, creating isolated network segments.

 Isolation and Security: This ensures that traffic is contained within its segment
unless explicitly routed through the core network.

e Scalability: Easy to add new ISP segments by creating additional bridges, enabling
future expansion without disrupting the existing setup.

4. Security Considerations and Traffic
Flow

1. Traffic Isolation and Management
e NAT and Firewalls: VyOS will manage Network Address Translation (NAT) and
firewall rules, ensuring that internal segments are secure and external access is
controlled.
o Traffic Filtering: Rules will be configured to allow or deny traffic between virtual
ISPs, core services, and the external world based on defined security policies.
2. OPNsense and HAProxy Integration
e OPNsense: Will function as a secondary layer of security, handling more advanced
firewall and filtering tasks. It will also provide VPN services and further segment
internal traffic.
e HAProxy: Responsible for load balancing and managing traffic to and from the
public-facing services hosted within the ecosystem, ensuring smooth, reliable access
for monitoring tools like Grafana and Zabbix.

5. Visualization and Monitoring

1. Internal and External Monitoring
e Tools like Zabbix, Grafana, and OpenSearch will be used to track key metrics
across the network, including traffic flows, resource usage, and performance
indicators.

e Live Dashboards: Accessible both internally and (selectively) from the external
internet, giving a real-time view of the network’s health and activity.
2. Secure Public Access via NGINX Proxy
e Traffic Routing: Using NGINX at a remote server (e.g., Linode) to securely route
external requests to the internal monitoring systems.
o Data Security: Ensures that only specific data and metrics are exposed, while
maintaining a strong security posture across the network.

Conclusion

This architecture lays out the groundwork for everything we’re about to build. By understanding
the high-level design and purpose of each component, you'll have a clearer path forward when it's
time to configure the VMs, set up routing, and deploy services. The network topology and
segmentation we’ve planned ensure scalability, security, and realistic simulation of real-world ISP
environments. Now that we’ve covered what’s needed and how it will all fit together, it's time to
start building in Chapter 2.

We'll begin by setting up the core services, starting with the VyOS router, DNS root server, and our
special Stratum 1 time server. This foundation will pave the way for the rest of the project, so let's
get ready to dive in.

Raw Notes

These are the raw notes from building this project.

Raw Notes

Internal DNS Configuration
for ispl.net in a Private
Network Environment

Objective

This guide describes the steps to configure Core DNS to forward all requests for ispl.net to ISP
DNS 1 within an isolated network. The goal is to set up an authoritative, internal-only DNS for
ispl.net, ensuring local queries are resolved internally without reaching external DNS servers.

Requirements

e Core DNS as the main DNS resolver for internal clients

e ISP DNS 1 as authoritative for ispl.net

e Internal domain ispl.net that only resolves within the private network, avoiding external
DNS lookups

Setup Steps

1. Define the Zone for ispl.net on ISP DNS
1

First, configure ISP DNS 1 to serve as the authoritative DNS for ispl.net.

1. Edit the ISP DNS 1 configuration file (typically located at /etc/bind/named.conf.local) to add
the zone for ispl.net. Define the zone as a master and specify allow-query to any IP and
allow-transfer permissions for Core DNS (10.1.0.10).

zone "ispl.net" {
type master;
file "/etc/bind/zones/db.ispl.net";
allow-query { any; };

allow-transfer { 10.1.0.10; };

Create the zone file, typically at /etc/bind/zones/db.ispl.net . This file should include the SOA record,
NS record, and A records for all devices within ispl.net.

$TTL 86400
@ IN SOA isp-dnsl.ispl.net. admin.ispl.net. (
2023102701 ; Serial
3600 ; Refresh
1800 ; Retry
1209600 ; Expire
86400 ; Minimum TTL
)
; Nameserver
IN NS isp-dnsl.ispl.net.
; A records
isp-routerl IN A 10.10.0.2
isp-dnsl IN A 10.10.1.10
isp-gateway IN A 10.10.2.1
isp-business IN A 10.10.3.1

Restart BIND on ISP DNS 1 to apply the changes:

sudo systemctl restart bind9

2. Configure Core DNS to Use ISP DNS 1
for ispl.net

On Core DNS, define a stub zone for ispl.net that points to ISP DNS 1 as the authoritative DNS
server for this domain.

1. Add a stub zone entry for ispl.net to the Core DNS configuration file, typically located at
/etc/bind/named.conf.local . In this entry, specify the type as stub, set the masters to ISP DNS
1's IP (10.10.1.10), and add a forwarders directive with empty braces to prevent

forwarding to external servers.

zone "ispl.net" {
type stub;
masters { 10.10.1.10; };

forwarders {}; # Prevents external forwarding for ispl.net

e Explanation of the forwarders {}; Directive: By setting forwarders {}; , we stop Core DNS
from forwarding requests for ispl.net to any external DNS servers. This directive is
crucial to ensure Core DNS exclusively queries ISP DNS 1 for this internal-only domain.

e Restart BIND on Core DNS to load the new configuration:

sudo systemctl restart bind9

3. Verifying the Configuration

Use the following steps to confirm that the configuration is working correctly.

1. Run a direct query to ISP DNS 1 from Core DNS to confirm that ISP DNS 1 is serving the
ispl.net records correctly:

dig @10.10.1.10 isp-routerl.ispl.net

Test forwarding from Core DNS by querying ispl.net records without specifying ISP DNS 1,
confirming that Core DNS is forwarding queries correctly to ISP DNS 1:

dig isp-routerl.ispl.net @10.1.0.10

Use tcpdump or a similar tool to verify that DNS requests for ispl.net are reaching ISP DNS 1 and
returning the expected responses:

sudo tcpdump -i ethO host 10.10.1.10 and port 53

Troubleshooting and Common Issues

1. REFUSED Errors: If Core DNS receives REFUSED responses, ensure that ISP DNS 1 has
allow-query and allow-transfer settings configured to allow access from Core DNS
(10.1.0.10).

2. allow-query-cache Denials: If cache queries are denied, add allow-query-cache { 10.1.0.10;
localhost; }; to ISP DNS 1 to permit Core DNS to access cached entries for faster responses.

3. No Matching ‘Forwarders’ Statement: The forwarders {}; directive is necessary in this
configuration to prevent Core DNS from forwarding ispl.net queries to global DNS
servers. Adding this directive in the stub zone settings ensures exclusive forwarding to ISP

DNS 1.

Raw Notes

Building the ISP Mail System
with Roundcube

For a setup emulating around 100 users accessing a Roundcube webmail server, you'll want a
balance of resources to handle concurrent webmail sessions, email delivery, and storage for
messages. Here’s a guideline for hardware resources to support this experimental environment
effectively:

Recommended Hardware Resources

1. CPU:

e 4-6 cores: This will allow you to handle concurrent connections, especially as users
access the webmail interface and the server handles SMTP/IMAP transactions.

e Emulated users tend to put moderate stress on the CPU due to encryption (TLS/SSL
for IMAP, SMTP) and web traffic, so having multiple cores will ensure responsiveness.

Memory (RAM):

e 8-12 GB RAM: Roundcube itself is lightweight, but Dovecot and Postfix will need
memory to handle simultaneous IMAP connections. Each user session can consume a
small portion of RAM, especially with multiple concurrent mail retrievals.

e Consider 16 GB if you want extra room for scalability or plan to run additional
monitoring tools.

3. Storage:

e 200-500 GB SSD: Storage needs can vary, but this range should be adequate for
emails and attachments. SSDs are preferable to HDDs for faster 1/O performance,
which will help with message retrieval and database access.

e Database Storage: Consider at least 50 GB allocated for the MariaDB database,
especially if you plan to retain a large amount of mail data.

4. Network Bandwidth:

e 1 Gbps Network Interface: Internal experiments typically don’'t need heavy
outbound bandwidth, but a reliable internal network interface with 1 Gbps is
sufficient for handling mail traffic and simultaneous IMAP sessions.

5. Additional Considerations:

e Load Testing and Monitoring Tools: Include tools like Grafana, Prometheus, or
simple Linux system metrics to monitor CPU, memory, and network usage as you
emulate load. This can help you identify bottlenecks and tune the configuration as
needed.

N

e Virtual Machine Sizing: If running in a VM, allocate resources as close to physical
hardware specs as possible, avoiding overcommitted resources.

This setup will support your experiment with enough headroom to simulate user activity
realistically. Let me know if you want further details on specific configurations for any of these
components!

Raw Notes

Kea DHCP Configuration
Documentation

Overview

This configuration file is set up to provide DHCP services on a 10.10.1.0/24 network, specifically
for an internal ISP user services network. It includes specific IP reservations, DNS settings, and
comprehensive logging configurations to track DHCP activity at a detailed level.

Configuration Detalils

{
"Dhcp4": {
"interfaces-config": {
"interfaces": ["ens18"]
b
"match-client-id": false,
"subnet4": [
{
"subnet": "10.10.1.0/24",
"pools": [1,
"option-data": [
{
"name": "domain-name-servers",

"data": "10.10.1.10"

1
{

"name": "domain-name",
"data": "ispl.net"
}
1

"reservations": [

{
"hw-address": "BC:24:11:07:88:16",
"ip-address": "10.10.1.100"
}
]
}
I
"loggers": [
{
"name": "kea-dhcp4",
"severity": "DEBUG",
"output_options": [
{
"output": "/var/log/kea/dhcp4.log",

"maxver": 10

"name": "kea-dhcp4.dhcpsrv",
"severity": "DEBUG",
"output_options": [
{
"output": "/var/log/kea/dhcp4-dhcpsrv.log”,

"maxver": 10

"name": "kea-dhcp4.leases",
"severity": "DEBUG",
"output_options": [
{
"output": "/var/log/kea/dhcp4-leases.log",
"maxver": 10

}

Explanation of Each Section

1. "interfaces-config":

e Purpose: Defines the network interfaces Kea should listen on for DHCP requests.

e Setting: "interfaces": ["ens18"] binds Kea to ensl18, the network interface for the
10.10.1.0/24 subnet.

2. "match-client-id": false:

e Purpose: Instructs Kea to ignore the DHCP Client ID and rely on the hardware (MAC)
address for client identification. This can be helpful if clients do not consistently
provide a Client ID or if MAC-based reservations are used.

3. "subnet4":
e Purpose: Defines the subnet settings for the 10.10.1.0/24 network.
e Details:
o "subnet": "10.10.1.0/24" specifies the address range.
o "pools": [] indicates no dynamic IP pool is configured, meaning only
reservations will be assigned.
o "option-data" includes DHCP options:
o "domain-name-servers": "10.10.1.10" specifies the DNS server.
o "domain-name": "ispl.net" sets the DNS search domain for the network.
o "reservations" contains static IP reservations:
o Example Reservation: A device with MAC BC:24:11:07:88:16 receives the
reserved IP address 10.10.1.100 .
4. "loggers":

e Purpose: Enables detailed logging at the DEBUG level, splitting logs across
different categories.

e Details:

o "kea-dhcp4" : General DHCP activity log file at /var/log/kea/dhcp4.log .
o "kea-dhcp4.dhcpsrv" : DHCP server-specific events logged at /var/log/kea/dhcp4-
dhcpsrv.log .
o "kea-dhcp4.leases" : Lease assignment and release events logged at
/var/log/kea/dhcp4-leases.log .
e Log Rotation: Each log file has maxver: 10, allowing up to 10 rotated log files.

Usage Notes

e Reservations: This configuration only serves devices with reservations due to the empty
pool configuration. Ensure all required devices have reservations.

e Logging: The DEBUG level will produce detailed logs useful for troubleshooting and
monitoring DHCP activity.

This setup should provide reliable, reservation-based IP assignment with comprehensive logging for
monitoring DHCP activity on the 10.10.1.0/24 network. Let me know if there are additional
features or details you'd like to incorporate!

